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LINEAR MODELS



As we have mentioned ML allows to create models in a
supervised, semi-supervised, unsupervised or reinforced
fashion.

Nevertheless most of the models need to be pre-specified in
some sense, that is, we can not simply tell the machine “to
learn”, we need to formulate some particular hypothesis or,
intuitively, to provide with some “hints”.

For example, asssume that, after observation, we record and
plot the behavior of two variables X and Y, where Y is the
variable we are interested in, let us assume that we have:
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We see that whenever X is bigger Y is bigger so we can

postulate that there may be a proportional relationship between
XandY.

Y=aX

This is a model, that is, a mathematical entity that allows to
explain some particular fact, in this case, the relationship
between X and .

Note that the model involves not only the variables (X and Y, in
our case) but parameters (x i our case) that give flexibility so
that if either X or Y changes then the model still holds in some
sense.

Note also that the parameters may differ even if the relationship
still holds, e.g.



« Assume now the following data and look at the corresponding

plot:
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* Note that the relationship still holds (Y is proportional to X) but
it is not exactly the same, Y is more responsive to X of, in
geometric terms, the slope of the points has increased.



Notice that even though the model is valid, the value of the
parameter will not be, being higher in the second case.

The process of finding the optimal parameters for a model is
what we call estimation (in statistical terms) or learning (in the
machine learning argot).

Algorithms are computational procedures (most of the times
iterative procedures) that allow to find the parameters of the
model which are optimal under some criterion.

For example, we may try to find the value of the parameter S so
that the model “fits” the data as close as possible.



 Intuitively (no formal method used) we may suggest a value of
B=2 in the first case and B=3 in the second.
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The model is still the same but the calibration is different.

Even generative models that modify their structure adding
complexity to capture the relation between independent and
dependent variables.

For the moment we can assume that the parameters are found
by trial and error.

Notice that, after finding the optimal value (optimality is defined
later) we can employ the model to forecast unseen examples,
e.g.

Y/ — ﬁX’



Models may have some inertial component (in models such as
artificial neural networks it is called the bias and in Statistics the
intercept) so that there is a response even if the input is zero:

Y=a+pBX
And similarly we can forecast for new observations:

Y'=a+ BX’
The model that we have just described is called a linear model
for obious reasons, if we plot Y against X the result is a line

(which passes through the origin if ®=0) and we say that there is
a linear relationship between Y and X.

Mor specifically, this model is called a univariate linear model
because there is only one idependent variable.

The parameter B is said to be the slope, that is the change in Y
associated with a one-unit change in X (B=AY/AX).



Geometrically:
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In most real applications, the relationship between Y and X will
not be perfect but affected by unpredictable components that
are called noise, in such cases we have:

Y=o+ pX+e€

Note that, by definition, € is unpredictable so it will be useless
trying to make any guess about values of ¢ all that can be
“learnt” of the relationship between Y and X is sumarized in the
parameters of the model, o« and B in our case.

Finally, note that we may have not just one independent

variable but a set of them, in such case we can proceed similarly
and consider a multivariate linear model:

Y=a+p X+ X +.+B X +¢
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LINEAR MODEL ESTIMATION
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As mentioned, the parameters that index any model need to be
found, we have also mentioned that they should be the “best”
ones under some particular criterion.

One of the commonest criteria is mean squared error, there are
technical details why this criterion is optimal in many
applications but for the moment we will rely on an intuitive
interpretation.

Note that for any value of the parameters we can calculate the
difference between the actual data and our prediction using
those parameters:

e=g(Y,Y)=(Y=Y)=(Y —(&+ X))

Intuitively, it is obvious that a “good” model would provide
foerecasts that are as close as possible to the true observations,
that is, a good model would try to minimize g, i.e.

find o, B tomine
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Of course one would like to do this for ALL the observations in
the dataset, assume we have a sample

XY

minalﬁ 28,, = (YI. —(05+,BX’,))

Naturally one woud like:

Since positive errors could compensate negative errors it seems
more reasonable

min, de=(Y —(06+,3X,.))2

Note that the above formula explains the name: minimum
squared errors.
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Geometrically:
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Since, as mentioned, random guess is generally unfeasible, the
problem now becomes on using an efficient algorithm to find
the parameters.

There are several ways to do that but the simplest method is to
employ the normal equation, in the multivariate case assume we
have

( ) ( )
11 12 X1n Ym
X = 21 22 in Y = 12
X X X Y
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The optimal parameters, under the mse criterion, can be found
solving the equation:

B=(XX)' XY

Note, thet if we have an intercept the above formula holds by
considering

( )
1 X11 X12 Xm
X = 1 X21 Xzz in
\ 1 Xm’l Xm2 an ]
In this case:

o, B=(XX)" XY
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In order to reduce notation complexity it is common to simplify
as

0 =(X"X)"'XY
Where
Y = 90 +6?1X1 +t92X2 +...+9an

Note that these parameters found are optimal under the mse
criterion, but they do not need to be if we change the
performance function, e.g.

e=g(Y,V)=|Y-Y

e=gv,V)=(v" -V*)
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NONLINEAR MODELS
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In many situations the relationship between dependent and
independent variables can not be captured using the
preceeding models.

For example, let us suppose that we want to estimate the
number of individuals of some population, as time passes the
population increases fast but after some point it increases at a
lower pace because individuals compete for scarce resources.
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Note that a linear model would fail to capture the relationship
between time and population size.
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For example we could suggest
Y =a+ Bt+yt’

Which is a quadratic regression model.
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After a nonlinear model has been proposed, the procedure to
fit it to the data is very similar as for the linear case, again we
have to find the optimal vale of the parameters that index the
model

Y =&+ Bt+ 7t

The complication comes from the fact that, in these cases, the
normal equation can not be used and an iterative procedure
must be used.

There are many algorithms to estimate such parameters being
the Gauss-Newton method one of the most commonly
employed.
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Notice, also, that some non-linear models can be transformed
into linear ones using some transformation.

For example, consieder the multiplicative model (in contrast
with the preceeding which is and additive model):

Y =B XIX X
Taking logarithms
log(Y) =log(B,)+ B log(X,)+ B,log(X ) +...+ B log(X

And renaming log(Y)=Y’, log(By)=B,", log (X) = X", we obtain:
=B+BX'+B X '+.+B X"

Which is linear, and so parameters can be estimated in the usual
way.
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After the best values of the parameters are found, one can
transform them back to find the model of interest, i.e.

In practice, these transformations rarely do exist (except in very
particular settings) and one has to consider the original
functional form and estimate its parameters directly.
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Out of the infinite number of nonlinear models one can find
some that are particularly useful and that are extensively used in
machine learning.

One of them is the univariate logistic model:

1
_ﬁo _ﬁ'IX

Y =
1+ e

Note that this model has a relevant property, when X is possitive
and very large Y=1 and when X is negative and very large then

Y=0.

The response variable (output) is, then, a bounded number
between [0,1], and so it can be interpreted as a probability.

P(Y =1X)
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« Of course we can also consider the multivariate logistic model:

1
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As mentioned, logistic models can be used in situations where
one wants to determine the probability that some event
happens (Y=1) given some predictor variables.

For example, one might be interested in calulating the
probability that one individual develops some particular
symptom given that he has taken some combination of drugs by
using some database of symptoms-drugs intake.

After the model is built and tested, doctors could use it to
predict whether or not some combination will provoke some
reaction.

The logistic function has been particularly important in the
development of Artificial Neural Networks models since, for
some time, it was the most widely employed transfer function
used in artificial neurons.
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PARAMETRIC AND NONPARAMETRIC MODELS
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* The problem is that all inear models are the same all but all the
non-linear models are different, that is, there is a huge number
of models that can be tried.

* In the preceeding example we could propose any of these two

models
12

Y =at+ Bt +yt’ + 5t

| Y:a\/;

10
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e |n fact there is an infinite number of non-linear models that can

be fitted.
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Obviously it would be infeasible to try many different models,
even a relatively moderate number of them, we need to e,ploy
one single parameterization that can be used regardless of the
relationship between Y and X.

The models that we have seen up to now (univariate and
multivariate linear models and logistic model) are parametric
models, they employ a limited number of parameters which are
estimated trying to fit the data.

In contrast, a nonparametric model is the one which can not be
characterized by a bounded number of parameters, that is, the
number of parameters is not pre-determined.

Notice that nonparametric models still use parameters, the
name is a bit confusing since it can be interpreted that these
models do not employ parameters, which is not the case.
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Some nonparametric models have the important property that they
can approximate any funtion to any desired level just given enough
complexity, this is called the universal approximation property.

For example, asume that we want to find the relationship between
one variable Y and a two variables X, X,, that is:

Y = (X, X))

Assume that we do not know the specific functional form of fso that
e.g. we do not know whether fis linear, logistic etc.

We may use a nonparametric model so that regardless which is f it
can replicate the relationship between Y and X.

One candidate is a polinomial of order n, where n is indeterminate:

. 2 2
Y —051X1 +0ch2 +053X1 +054X +0¢5X1X2 +.....
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* |t can be demonstrated that there exist parameters

N N N /N

0(1,052,063,054,065 .....
such that

_ A A SN2 A N2 A
Y—f(X1,X2)~0¢X1+0¢2X2+053X1+(x4X +a X X +..
to any desired level.

* Notice that to the extent that we employ nonparametric models
with the approximation property it is unimportant which is the
specific functional form that we are trying to find, since the
nonparametric models will “behave” exactly the same as the
functional form of interest.

 There are several nonparametric models with the universal
approximation property, being feedforward neural networks

with (e.g.) sigmoid units one of the most powerful ones.
32



Nonparametric mdels have a number of advantages against
parametric ones being the most important the possibility to
use a single model to find any particular relationship.

Nevertheless they have several disadvantages too:

* Their complexity needs to be controlled to avoid
overfitting (more on this latter)

* The computational load is generaly important
* Models are not easily understandable

* Formal testing (e.g. significativity of the parameters) is
difficult or mostly impossible.

* Performance degrades when there is not enough data
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BIAS AND VARIANCE
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As we have seen, models may have many different
parameterizations and they will differ on how well they fit the
data.
For example, in the following example, let the blue dots
represent the training data and the green ones the testing
data.
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* Let us suppose that we fit a linear model by minimizing the
squared distance to the blue points.

* The linear model will fails to capture exactly the relationship
between X and Y in the training data because not all the data fall
along a line: relationship might be nonlinear or affected by noise.

Y £ a+ BX Y =1(X),f nonlinear
4 Y=OC+ﬁX+8
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* Now, assume that we we employ a nonlinear/nonparametric

model that, with enough complexity, could perfectly
approximate the data points:
A
Y

* The curve passes exactly over the training data.

* QObviously, we can conclude that the second model is better on
the training data set.

37



The second model is able to first the training data because it is
more flexible, it can exactly represent the training data it is said
that it has a low bias.

The first model has a lot of restrictions on the shape of its
functional form this makes it unable to capture the training data, it
has a high bias.

In intuitive terms, we may consider bias as an over-simplification
of the hidden relationship between X and Y.

Notice that bias is easily avoidable: we can just increase the
complexity of the model to reduce it, nevertheless, this will have
consequences as we will shall see now.
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* Now, let us focus on the testing data set, in the first model we have:

Y

A

————————————————————————
e And in the second:
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Notice that the errors on the testing set are higher for the second
model than for the first one.

We have to conclude that the first model is better on the testing
set!!!,

When we use the same models on new data the aparent flexibility
of the second —more complex- model transforms into a drawback:
it is perfect for the training data but this makes it being imperfect
for the testing data.

When a model exhibits a big difference between data and
prediction on new data it is said to have a high variance.

By contrast, the first model made few assumptions on the data, it
is “equally simple” along the training and testing data sets and
this allows it to fit the testing set better, it has a Jow variance.

40



So:
First model: high bias & low variance

Second model: low bias & high variance

This is known as the bias-variance dilemma: flexible models
have a lower bias but a higher variance than more rigid
models.

This dilemma is unavoidable, it is impossible to have models
with low bias and also with a low variance, there is a tradeoff
between these two.

A good model is the one which has a good bias/variance

relationship, it correctly captures the relationship in the training
data and permits to correctly forecast the testing data.

41
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The bias-variance dilemma is one of the most important aspects
to be taken into account when building models under the ML
nonparametric paradigm.

One should not be tempted by complex models who provide a
“perfect” explanation of the past because these models most of
the times will provide bad forecasts.

Of course, models which are bad when capturing relationships
on the training data will continue being bad to make forecasts.

Good models represent the training data but do not over-
represent the training data.
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The error of any model can be decomposed in terms of the bias
and variance concepts that we have just seen, omitting the
mathematical details, it can be demonstrated that, for any
model:

Error = (Bias? + Variance) + Irreductible error
The above expression tell us that there are two kinds of errors:

e One that we can call model error (bias + variance errors)
which is due to the use of an unapropriate model and that
can be reduced by correctly choosing the right one

* Another that we call unavoidable error which is due to the
stochastic relationship between input and output variables

and which can not be reduced regardless of the model’s
choice.

44



UNDERFITTING AND OVERFITTING
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The bias-variance dilemma is a direct consequence of the non-
perfect (stochastic) relationship between explanatory and
explained variables.

Y:fe(X)+e

We need models with enough flexibility to fit the relationship
that links the variables but it would be useless trying to fit the
random component because, by definition, it is random and so it
is unpredictable.

When the model is too flexible it acts as a “database” that
simply “remembers” the training data.

Notice that the training data includes a random component that

is not going to happen in the future so that is is useless to
“remember” it"

46



* For example, assume the true relationship:

Y=2X+¢€

« |f we had the following database:

"true" Y Y X
4 3.6 2
-2 -1.8 -1
6 6.6 3
0 -0.3 0
-4 -3.7 -2
8 8.2 4

We would not be

interested in “learning” the random
component € since, in another example we may have

"true" Y Y X
4 4.3 2
-2 -2.1 -1
6 6.3 3
0 0.2 0
-4 -3.6 -2
8 7.6 4
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* The random component does not tell us anything about the true
relationship between X and Y.

* If we employ a model which is too complex so that it exactly
represents the training data we are forcing it to “remember”
random factors that will be useless for prediction.

« We are overfitting the data, we should have employed a simpler
model.

A

True relationship

> 48



« Alternatively, the model employed can be too simple and this
will make ift failing to capture the relationship between Y and X

* For example we may propose a trivial model Y = ¢

True relationship

Fitted

>

X

« We are underfitting the data, that is, we should have employed a

more complex model.
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Models which underfit the training data will have a poor
performance on the testing data, they are “too simple”.

Models which overfit the training data will have a poor
performance on the testing data, they are “too complex”.

There will be a model with an optimal complexity, neither too
simple nor too complex that will capture the true relationship

between X and Y.

Notice that the concepts of overfitting and underfitting are
closely related to the bias-variance dilemma:

« Models with a high bias underfit data

* Models with a high variance overfit data

51



* In general terms we will have the following shape of the learning
curve:
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The optimal balance between bias and variance is mostly
context or problem dependent: in some cases models are more
prone to have a high variance, they easily overtfit the data
leading to bad forecasts.

In other cases, one does not need to worry so much for
controlling complexity since the model is relatively robust in
terms of the bias-variance trade off.

As we will see later, there are a number of techniques to control

the complexity of the models to attain a reasonable balance
between representation and forecasting power.
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